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SUMMARY

A new interface reconstruction method in 3D is presented. The method involves a conservative level-
contour reconstruction coupled to a cubic-Bézier interpolation. The use of the proposed piecewise linear
interface calculation (PLIC) reconstruction scheme coupled to a multidimensional time integration provides
solutions of second-order spatial and temporal accuracy. The accuracy and efficiency of the proposed
reconstruction algorithm are demonstrated through several tests, whose results are compared with those
obtained with other recently proposed methods. An overall improvement in accuracy with respect to other
recent methods has been achieved, along with a substantial reduction in the central processing unit time
required. Copyright q 2008 John Wiley & Sons, Ltd.

Received 3 August 2007; Revised 30 December 2007; Accepted 2 January 2008

KEY WORDS: volume tracking; volume of fluid method; 3D multidimensional advection; PLIC interface
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1. INTRODUCTION

Among the several methods developed to simulate free surface and interfacial flows [1] (each of
them with its own advantages and disadvantages), the volume of fluid (VOF) method is one of
the most widely used. Their high efficiency in conserving mass and the simple way in which the
topological changes of the interface are treated are two of the most relevant advantages of VOF
methods.
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Piecewise linear interface calculation (PLIC) methods are commonly used to reconstruct the
interface in VOF methods [1–3]. At each cell, the interface orientation is usually obtained from
an approximation of the gradient of a discrete function, F , whose value in each cell is the fraction
of the cell occupied by the reference fluid, being equal to one in cells full of fluid, zero in empty
cells and a value between zero and one in mixed cells containing the interface. The interface
position is then determined from the value of the discretized F function in the cell. Among the
most widely used PLIC methods, Youngs’ explicit method [4] and Puckett’s iterative method [5]
may be mentioned. The former has an accuracy between first and second order, and the latter,
which is computationally more expensive (the computational time might become prohibitive in 3D
problems), is second-order accurate. Another second-order method, only applicable to orthogonal
grids, was proposed by Chorin [6]. In this method, the interface orientation is calculated from a
curve defined by a 3×3 array of volume fractions. An improvement to this method, which performs
well on unstructured grids, was proposed by Swartz [7], and first described in algorithmic form
by Mosso et al. [8]. In this improved version, the interface curve is constructed to pass through
the midpoints of a tentative segment and its two neighbors. More recently, López et al. [9, 10]
proposed similar approaches whereby a spline-interpolated curve passing through midpoints of
tentative segments was used to obtain the interface orientation. A more detailed description of
these and other PLIC reconstruction methods in 2D can be found in [9, 10].

To date, relatively few second-order reconstruction methods for 3D have been proposed. We
might mention the extension of the non-iterative ELVIRAmethod [11, 12] to 3D proposed by Miller
and Colella [13], which requires high computational effort because it involves between 72 and 144
candidate orientations and a 125-cell stencil for each cell interface to be reconstructed. Liovic et al.
[14] proposed the iterative second-order CVTNA reconstruction method. This 3D method, which
is based on the 2D method proposed by Swartz [7], achieves high-order accuracy within a 27-cell
stencil and seems competitive with respect to other second-order methods. However, when used
with a direction-split advection algorithm, it is still computationally expensive at high resolution,
requiring about 50 times the central processing unit (CPU) time needed by Youngs’ method. More
recently, Aulisa et al. [15] proposed the least-squares fit (LSF) reconstruction method in 3D, which
is second-order accurate when applied iteratively.

The aim of this work was to develop a fast, efficient and accurate reconstruction method
in 3D which involves a non-iterative PLIC method using a conservative level-contour interface
reconstruction coupled to a cubic-Bézier interpolation. The proposed reconstruction method is
described in the following section. The results are compared in Section 3 with those obtained by
several authors for the following tests: the reconstruction of interfaces with two different shapes,
the advection of a spherical fluid body in simple translational and rotational flows and the interface
deformation in two different flows with non-uniform vorticity.

2. INTERFACE RECONSTRUCTION

The interface is reconstructed in each cell as a plane defined by n·x+C=0, where C is a constant,
and n and x are, respectively, the inward (pointing to the fluid) unit vector normal to the interface
and the location of a generic point on the plane. The aim of the proposed interface reconstruction
method is to improve the accuracy of methods such as the well-known reconstruction method of
Youngs, while keeping the additional required computational effort as low as possible. In order
to assess the accuracy and efficiency of the proposed method, its results will be compared in
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PIECEWISE-PLANAR INTERFACE RECONSTRUCTION 925

Section 3 with those of Youngs’ method and of two more recent methods that have demonstrated
their accuracy: the extension of the ELVIRA method [11, 12] to 3D proposed by Miller and Colella
[13] and the iterative second-order CVTNA reconstruction method proposed by Liovic et al. [14].
The details of our implementation of Youngs’ and the ELVIRA methods are briefly described in
Appendix A.

The proposed PLIC method, which is an extension to 3D of the strictly conservative level-contour
reconstruction method for 2D described in [10], basically consists of the following steps:

Step 1: Construction of a 0.5-level contour. The interface is first reconstructed at each time
step from a 0.5-level contour of the volume fraction function. This procedure is similar to that
described by Shin and Juric [16] for interface reconstruction in a front tracking method.

The interface is represented in each cell by sequentially joining the points at the edges of the
six cell faces where the linearly interpolated volume fraction, Fp, is equal to 0.5. The location
of each of these points, xp, is determined by linear interpolation from the values of the volume
fraction at the ends of the corresponding cell edge, Fei and Fei+1 (Figure 1):

xp =xei+1 −
Fei+1 −0.5

Fei+1 −Fei
(xei+1 −xei ) (1)

The volume fraction at end i of a given cell edge is calculated by averaging the volume fractions
of the eight surrounding cells:

Fei =
∑8

k=1 FkVk∑8
k=1 Vk

(2)

where Vk is the volume of cell k. All the xp points related to a single cell are connected by line
segments to form a (warped) polygon; this ‘interface polygon’ represents the restriction of the
0.5-level contour to a single cell. The first point of the interface polygon will be at the edge of the
first face found to contain an xp point (the search starts from the face with the lowest index, i.e.
face 1 in the case of Figure 1) between corners i and i+1 where Fei�0.5 and Fei+1<0.5, provided
these are ordered counterclockwise. The next point will be at the edge of the same face between
corners i and i+1 where Fei<0.5 and Fei+1�0.5. Then, the next face of the cell that shares the
last two corners with the previous face is identified (face 2) and a new point of the interface is
obtained similarly. This process is repeated until the interface polygon is closed.

The position vector, xc, of the centroid of the polygon formed by the interface segments is then
calculated as

xc= 1

n

n∑
i=1

xpi (3)

where n is the number of cell edges with Fp =0.5. Note that the closed polygon obtained from
the 0.5-level contour is not usually planar.

In the case shown in Figure 1, there are four faces in which the interface segments have to be
constructed, but up to six interface segments could in general be constructed in a cell of six faces.
In certain circumstances, such as that described by the cell on the right of Figure 2, more than one
0.5-level-contour polygons could be constructed. However, in order to simplify the triangulation
procedure described in the next step, we impose the restriction of constructing a single polygon
per interfacial cell. This polygon is constructed by following simple rules: an arbitrarily predefined
sequence of cell faces and vertices is used to select the polygon edges; no more than one polygon
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926 J. LÓPEZ ET AL.

Figure 1. Construction of the 0.5-level contour (Step 1).

Figure 2. Situation in which the level-contour interfaces of adjacent cells may not be connected through
their common face. The dotted line represents the alternative interface that would result if the level-contour

construction began at the top edge of face 1.

edge per cell face is allowed, and the polygon must be closed (the first and last points must be the
same). The extension of the proposed method to allow more than one interfacial polygon per cell
will be the subject of a future work.

Step 2: Surface triangulation and initial interface normal estimation. The idea in this step is to
obtain an initial estimation of the unit length normal of the interface plane equation at each cell. To
this end, triangles are first formed by linking the centroid of the polygon obtained from the 0.5-level
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contour in the cell with the centroids of polygons at adjacent cells. Then, the initial estimation of
the normal is calculated from a weighted average of the normals of the triangles. This approach
is preferable to the local triangulation used by Shin and Juric [16], which is based on linking
the edges and centroid of the 0.5-level-contour polygon at each cell, which would provide only
first-order accuracy. Note that the interface constructed at a given cell from the 0.5-level contour
will be connected with those of adjacent cells through their common face. This connectivity, which
is also useful in the context of front tracking methods, as discussed by Shin and Juric [16], allows
us to easily obtain a triangulated interface.

The details of the triangulation procedure are explained in the following with the aid of the
example represented in Figure 3. The process starts by connecting the centroid of the 0.5-level-
contour polygon in the cell to the left of the figure (point ‘a’) with the centroids of the polygons
in the adjacent cells (connection points 1,2,3 and 4). At the cell faces adjacent to a domain
boundary, the connection points are the corresponding centers of the 0.5-level-contour interface
segments (point 5 of the bottom face in the example of Figure 3). Triangles are finally formed by
linking the connection points. Once the local triangulated surface is obtained around point ‘a’, the
process continues around the centroid of the interface polygon in the cell to the right (point ‘b’).
Note that if triangulation around this new point were accomplished using only points 6, 7, 8
and ‘a’, implicitly connected with it (as made with point ‘a’), the resulting triangles would overlap
with those formed around centroid ‘a’. To avoid this, points 2 and 5 (which, respectively, were

Figure 3. Surface triangulation (Step 2).
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928 J. LÓPEZ ET AL.

connected to point ‘a’ just after and before point ‘b’), which are not implicitly connected with
point ‘b’, are used to obtain the triangulated surface by linking them with point ‘b’. This procedure
is repeated until the whole interface is completely triangulated. Note that the resulting triangulated
surface depends on the starting point of the triangulation procedure (for example, if it starts with
point ‘b’ instead of ‘a’ the result will be different). In general, the algorithm produces a more
regular triangulated surface when points with a higher connectivity between adjacent cells are
considered first (see the example of Figure 4).

The initial estimation of the unit normal vector of the interface plane equation is obtained from
the weighted average:

n=
m∑
i=1

nti �i

/
m∑
i=1

�i (4)

where m (�12) is the number of triangles surrounding the centroid xc, nti is the inward unit
normal vector of triangle i and �i is the spanning angle of triangle i at the centroid (see Figure 5).
The normal nti can be obtained as

nti =
li ×li+1

|li ×li+1| (5)

where li =(xci −xc)/|xci −xc| and li+1=(xci+1 −xc)/|xci+1 −xc| (xci and xci+1 are the other two
vertices of triangle i), and the angle �i =arccos(li ·li+1). Note that the normal nti obtained from
Equation (5) will point into the reference fluid, provided the triangle vertices are ordered counter-
clockwise as viewed from inside the fluid.

In situations such as that shown in Figure 2, the level-contour interfaces of adjacent cells (thick
lines) may not be connected through their common face (note that if the construction of the level
contour in the cell on the right of the figure began at the top edge of face 1, the level contour #1,
instead of #2, would be obtained). A triangulated surface formed by connecting the centroid at
the left cell and the centroid of the 0.5 level contour #2 would produce a poor estimation of the
interface orientation. In this type of cell, or in cells that are not crossed by any 0.5-level contour but
where 0<F<1, the interface is reconstructed using Youngs’ method, as described in Appendix A.

Figure 4. Surface triangulation of a sphere. The triangulation is carried out from (a) higher to lower
connectivity points and from (b) lower to higher connectivity points.

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 58:923–944
DOI: 10.1002/fld



PIECEWISE-PLANAR INTERFACE RECONSTRUCTION 929

Figure 5. Interface orientation obtained in Step 2 from the triangulated surface.

Figure 6. Example of reconstruction of a sphere in a coarse grid (sphere radius of 1.875�x):
(a) triangulated surface obtained after step 2; (b) conservative planar interface (step 3);

and (c) triangulated surface obtained after step 4.

Step 3: Enforcement of volume conservation. A plane interface surface with the normal n obtained
in Step 2 is positioned in every cell by enforcing volume conservation, using the analytical method
of Scardovelli and Zaleski [17] to calculate the constant C (an iterative method, such as Brent’s
method [18], could also be employed).

Step 4: Interface normal adjustment. In this step, point xc of the triangulated surface in every
interfacial cell obtained from Equation (3) (see the example of Figure 6(a)) is relocated at the
centroid of the interface surface obtained in Step 3 (Figure 6(b)). Once the triangulated surface is
readjusted in this way (Figure 6(c)), the normal vector calculation described in Step 2 is applied
again. The improved accuracy obtained with this interface normal readjustment can be observed,
for sufficiently fine grids, from the results of Tables I and II, which are discussed in Section 3.1.

This type of adjustment, as discussed below, was first proposed by Swartz [7] for 2D problems.
Step 5: Additional adjustment of the interface normal by cubic-Bézier interpolation. To further

increase the accuracy of the interface orientation in each cell before calculating the final value of
constant C of the interface plane equation, the vector normal to the interface, n, can be readjusted
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930 J. LÓPEZ ET AL.

Table I. Reconstruction errors obtained for a sphere using different
reconstruction algorithms and grid sizes.

CLCIR
Grid with 2 iter.
size Youngs LSF [15] LLCIR ELCIR CLCIR CLC-CBIR in Step 4 CLCIR-T2

103 1.89×10−3 1.92×10−3 2.14×10−3 2.23×10−3 2.38×10−3 2.43×10−3 2.33×10−3 2.87×10−3

(1.84) (2.01) (2.03) (1.99) (2.11) (2.11) (2.09) (1.95)

203 5.28×10−4 4.77×10−4 5.23×10−4 5.62×10−4 5.50×10−4 5.64×10−4 5.46×10−4 7.45×10−4

(1.45) (2.00) (1.89) (1.98) (2.08) (2.12) (2.07) (2.15)

403 1.93×10−4 1.19×10−4 1.41×10−4 1.42×10−4 1.30×10−4 1.30×10−4 1.30×10−4 1.68×10−4

(1.17) (2.00) (1.61) (1.88) (2.01) (2.03) (2.01) (1.96)

803 8.60×10−5 2.98×10−5 4.61×10−5 3.86×10−5 3.23×10−5 3.18×10−5 3.22×10−5 4.33×10−5

(1.06) (2.00) (1.32) (1.69) (2.01) (2.02) (2.01) (2.07)

1603 4.12×10−5 7.46×10−6 1.85×10−5 1.20×10−5 8.00×10−6 7.82×10−6 7.99×10−6 1.03×10−5

(1.02) — (1.14) (1.42) (2.00) (2.00) (2.01) (2.13)

3203 2.03×10−5 — 8.40×10−6 4.47×10−6 2.00×10−6 1.95×10−6 1.99×10−6 2.36×10−6

The orders of convergence are in parentheses. The results of the last column (CLCIR-T2) are obtained using
the CLCIR method when the triangulation of Step 2 is carried out, as in the case of Figure 4(b), from lower
to higher connectivity points.

Table II. Reconstruction errors obtained for a hollow sphere using different
reconstruction algorithms and grid sizes.

Original Improved Liovic et al. [14]
Grid size Youngs ELVIRA-3D ELVIRA-3D CVTNA CLCIR CLC-CBIR

103 3.63×10−3 2.89×10−2 6.89×10−3 2.06×10−2 4.68×10−3 4.91×10−3

(1.85) (3.53) (2.56) (3.78) (2.20) (2.25)

203 1.01×10−3 2.50×10−3 1.17×10−3 1.50×10−3 1.02×10−3 1.03×10−3

(1.45) (1.96) (2.05) (2.57) (2.09) (2.10)

403 3.70×10−4 6.43×10−4 2.82×10−4 2.52×10−4 2.42×10−4 2.41×10−4

(1.18) (1.96) (2.02) (1.99) (2.02) (2.04)

803 1.63×10−4 1.65×10−4 6.93×10−5 6.36×10−5 5.95×10−5 5.85×10−5

(1.06) (1.96) (2.01) (1.70) (2.01) (2.02)

1603 7.81×10−5 4.24×10−5 1.72×10−5 1.95×10−5 1.48×10−5 1.44×10−5

The orders of convergence are in parentheses.

with the aid of a cubic-Bézier interpolation. The improvement arises from the increase of the
interpolation order provided by the use of Bézier patches to regularize the triangulated interface.
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The idea is to replace the triangulated interface by a set of Bézier patches, which, in most cases,
will provide a more accurate estimation of the interface normal at every cell.

A cubic-Bézier patch (see, for example, [19]) is constructed over each triangle of the triangulated
surface obtained in Step 4. The barycentric coordinates of the patch will be defined as u= i/3,
v= j/3 and w=k/3, where i+ j+k=3 and i, j,k�0. The locations of the three patch vertices,
bi=3, j=0,k=0, b030 and b003, are made coincident with those of the three vertices of the triangle,
x1, x2 and x3 (see Figure 7). To complete the patch definition, six additional control points are
needed on the boundaries (two points on each one of the boundaries u=0, v=0 and w=0) and
another one inside the patch (see Figure 7). The locations of the control points on the boundaries
are obtained using the following cubic Hermite interpolation:

b210 = (2x1+x2−�12n1)/3

b120 = (2x2+x1−�21n2)/3

b021 = (2x2+x3−�23n2)/3

b012 = (2x3+x2−�32n3)/3

b102 = (2x3+x1−�31n3)/3

b201 = (2x1+x3−�13n1)/3

(6)

where �i j =(x j −xi ) ·ni and ni is the normal obtained at xi in Step 4. The location of the control
point in the interior is obtained from the following quadratic interpolation:

b111=(b210+b120+b021+b012+b102+b201) 14 −(b300+b030+b003) 16 (7)

The resulting cubic surface can be expressed as

S(u,v,w)= ∑
i+ j+k=3;i, j,k�0

3!
i ! j !k!u

iv jwkbi jk

Figure 7. Cubic-Bézier patch used for interpolation in each triangle.
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from which a new normal vector n∗
t is analytically obtained for each triangle at the barycenter

point u=1/3, v=1/3 and w=1/3 as, for example,

n∗
t = �S

�u
× �S

�v

/∣∣∣∣�S�u × �S
�v

∣∣∣∣
The normal unit vector defining the interface orientation is finally obtained as the weighted average:

n=
m∑
i=1

n∗
ti �i

/
m∑
i=1

�i

where �i is calculated as indicated in Step 2.
Step 6: Final enforcement of volume conservation. The constant C of the interface plane (with

the adjusted normal unit vector n) is finally obtained from volume enforcement using the analytical
method of Scardovelli and Zaleski [17].

The conservative level-contour interface reconstruction procedure consisting of Steps 1–4 and 6
will henceforth be referred to as the CLCIR method, and the coupled conservative level-contour
and cubic-Bézier-based interface reconstruction procedure (including Step 5), as the CLC-CBIR
method.

Two additional simplified versions of the proposed reconstruction algorithm have been imple-
mented in order to assess the advantages of using Step 2 (construction of an extended triangulated
surface over adjacent cells) and Step 4 (interface normal adjustment). The first version consists of
Step 1, a local triangulation step and Step 6, and will be referred to as the local level-contour inter-
face reconstruction (LLCIR) method. The local triangulation is based on linking the vertices and
centroid of the 0.5-level-contour polygon in each cell, and the unit normal vector of the interface
plane equation is calculated using the weighted average expression of Equation (4) (obviously, in
this case 3�m�6). The second version consists of Steps 1, 2 and 6 and will be referred to as the
extended level-contour interface reconstruction (ELCIR) method.

It should be pointed out that the adjustment described in Step 4, along with the enforcement of
volume conservation of Step 6, can be considered as a 3D version of a single step of the iterative
Mosso–Swartz interface reconstruction algorithm [7, 8]. Swartz [7] showed that this step, repeated
iteratively, makes PLIC interfaces converge to a second-order approximation quadratically, which
may explain why a single iteration is so good in dumping the linear component of the reconstruction
error. In Section 3, we show that, for curved interfaces, a single application of this adjustment
makes the proposed method to be, even with very fine grids, effectively second-order accurate
in 3D.

It should also be mentioned that, when the proposed reconstruction method is used, the number
of interfacial cells reconstructed with Youngs’ method is very small (typically, a fraction lower
than 1% of the total), all these cells having values of the volume fraction very close to 0.0 or 1.0.
This is the reason why the overall second-order convergence rate provided by the proposed method
in the tests presented in Section 3 does not deteriorate. These situations are similar to those of the
near-homogeneous cell cases (that is, with a volume fraction close to 0.0 or 1.0) found by Liovic
et al. [14] in their extension to 3D of the method of Swartz [7], which are handled using filtering
procedures to exclude ‘unsuitable triplets’ and do not allow for the planarity preservation criterion
to be satisfied.
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3. RESULTS AND DISCUSSION

In this section, the accuracy and efficiency of the proposed reconstruction method are analyzed
using different tests. The accuracy of the proposed reconstruction algorithm is first assessed in
a test that analyzes its ability to reconstruct interfaces of known geometries. The next two tests
correspond to the advection of a spherical fluid body in simple translational and rotational flows.
Then, the ability of the proposed method to handle interfaces that undergo large deformation is
analyzed in two different flows with non-uniform vorticity. All the results are obtained using the
multidimensional advection algorithm FMFPA-3D proposed by us in a companion paper [20]. The
results are compared with those obtained with different reconstruction methods implemented in
this work and with recent results available in the literature. The volume fractions are initialized
as in [21, 22], using a recursive local mesh refinement technique. This technique converges to
second order and is very accurate, which is very important for obtaining good estimations of the
reconstruction errors and convergence orders presented in the next subsection.

3.1. Accuracy of the reconstruction algorithm

The accuracy, convergence order and efficiency of the proposed reconstruction algorithm are
analyzed in this subsection. First, the ability of the proposed algorithm to reconstruct planar
interfaces is assessed. Then, the convergence order and computational efficiency are discussed for
different spherical shapes.

3.1.1. Plane reconstruction. Several reconstructions of planes with different orientations were
carried out. As a conclusion, it should be mentioned that the proposed CLCIR method cannot
reproduce a planar interface exactly unless Step 4 of the proposed algorithm is applied iteratively.
However, we have found that the criterion for planarity preservation used by Liovic et al. [14] (|nx −
nexactx |, |ny−nexacty |, |nz−nexactz |<10−4) is nearly satisfied with only one additional application of
Step 4 (a similar behavior has been observed by Aulisa et al. [15] in their recently proposed
LSF reconstruction method). On the other hand, for curved interfaces, only a single application
of Step 4 is necessary to provide second-order accuracy, even with very fine grids; hence, Step 4
will be applied only once in the rest of the tests presented in this section.

3.1.2. Sphere reconstruction. This test consists of reconstructing a sphere of radius 0.325, which,
in order to avoid artificial regularity of the results, is centered at (0.525,0.464, 0.516) in a unit
domain.

Table I shows the reconstruction errors and the order of convergence. The reconstruction error is
defined as the volume between the exact interface and its approximate representation. This volume
has been determined using an error measurement procedure similar to that described by Aulisa
et al. [15] (note that the results of the first column of Table I are very close to those obtained by
Aulisa et al. [15] using Youngs’ method). The order of convergence can be determined from

O= ln(E2n/En)

ln(1/2)
(8)

where En and E2n are the errors obtained using two different grids with n3 and (2n)3 cells,
respectively.
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It can be observed that the use of the extended triangulated surface (Step 2) in the ELCIR method
considerably increases the convergence order for the finest grid and that the interface normal
adjustment (Step 4) used in the CLCIR and CLC-CBIR methods increases still further the order of
convergence and the accuracy of the results. For the finest grid (which provides high resolution in
3D, with a ratio between the radius of the sphere and the cell size of 104), it can be observed that the
proposed CLCIR method keeps the second-order convergence and the reconstruction errors are one
order of magnitude lower than those obtained with Youngs’ method. Also, note that the increase
of the interpolation order provided by the use of cubic-Bézier patches only slightly improves the
accuracy of the results for sufficiently fine grids. In practical situations in which the fluid body
may reach complex geometries, such as those presented in the deformation tests considered in
the following sections, this improvement will become more evident (the improvement in accuracy
may be as high as 30%).

The sixth column of Table I, corresponding to results obtained with the CLCIR method using
two iterations in Step 4, shows that the improvement obtained with an additional iteration for
fine grids is lower than that obtained by the use of cubic-Bézier patches. The improvement in
accuracy obtained when Step 4 is applied iteratively in the deformation tests is also very low.
Similar findings were obtained by Aulisa et al. [15] when applying their recently proposed 3D
LSF method iteratively. The results obtained by these authors with only one application of the LSF
method are included in the second column of the table. Note that the accuracy of the proposed
method is very close to that of the LSF method, especially for fine grids.

The last column of Table I (CLCIR-T2) shows results obtained with the CLCIR method when
the triangulation of Step 2 is carried out from lower to higher connectivity points (as in the case of
Figure 4(b)). These results show that the use of a more regular triangulated interface surface may
significantly increase the accuracy. A detailed analysis of this issue will be the subject of future
work.

3.1.3. Hollow sphere reconstruction. The accuracy and efficiency of the proposed reconstruction
algorithm (with and without the cubic-Bézier interpolation step) in reproducing the hollow sphere
considered by Liovic et al. [14] (sphere of radius 0.4 with a spherical core of radius 0.2) are
compared in this section with those obtained with our implementations of Youngs’ and ELVIRA
algorithms, which are described in Appendix A, and with the CVTNA reconstruction method
proposed by Liovic et al. [14]. As in the sphere test, the hollow sphere is centered at (0.525,
0.464, 0.516) in a unit domain. The results of Table II show that the accuracy of the proposed
reconstruction algorithm for the coarser grids is only slightly lower than that of Youngs’ method
and considerably higher than that of the original ELVIRA-3D and CVTNA methods. Obviously,
for finer grids, second-order methods provide much better accuracy and the proposed method
represents an improvement over the other methods depicted in the table. The good performance of
Youngs’ algorithm for coarser grids may appear to be more evident than in the 2D version because
the grid refinement permitted (for given computational resources) in 2D is usually substantially
higher than in 3D.

Table III shows a comparison between the CPU times (relative to those required by Youngs’
method) consumed by the second-order reconstruction methods of Table II in the reconstruction
of the hollowed sphere. All test cases were run on a workstation with dual 2GHz Intel T7200
processors. Although the improved version of the ELVIRAmethod implemented in 3D considerably
reduces the time required by the original version (both the improved and original versions of the
method are described in Appendix A), it can be observed that its computational cost is still very
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Table III. Relative CPU times consumed by different second-order reconstruction algorithms in the
hollowed sphere test, using different grid sizes.

Original Improved Liovic et al. [14] Present work Present work
Grid size ELVIRA-3D ELVIRA-3D CVTNA CLCIR CLC-CBIR

103 2547.5 827.4 65.7 2.6 3.6
203 3272.6 899.0 57.7 3.2 4.3
403 2975.3 835.5 46.7 3.6 4.8
803 2634.6 797.6 43.7 4.0 5.1

Values are relative to the CPU time required by Youngs’ method using the same grid. The values corresponding
to the CVTNA method are taken from Table 2 in [14].

high (about a thousand times higher than that for Youngs’ method). Also, note that the CVTNA
method of Liovic et al. [14] is about 50 times more time consuming than Youngs’ method, which
represents a considerable improvement with respect to the ELVIRA-3D method. On the other
hand, the relative CPU time consumed by the proposed reconstruction algorithm is around one
order of magnitude lower than that of the CVTNA method, which makes it very efficient even in
combination with a split advection scheme. Note that the much better efficiency of the proposed
reconstruction method is accompanied by a slight increase in overall accuracy with respect to
ELVIRA-3D and CVTNA second-order methods.

3.2. Simple translation test

The test consists of translating a sphere of fluid of radius 0.2, initially centered at point
(0.25,0.25,0.25), by means of a steady and uniform flow with velocity components (1,1,1) for
a time T =0.5, in a domain of 1×1×1. The error is estimated with an L1 error norm defined as

E= ∑
i, j,k

V (i, j,k)
� |F (i, j,k)−F (i, j,k)

e | (9)

where V (i, j,k)
� is the volume of cell (i, j,k), and F (i, j,k) and F (i, j,k)

e are, respectively, the calculated
and exact volume fractions at the instant t=T .

Figure 8 shows the results for E , as a function of the Courant number, obtained with three grid
sizes and different reconstruction methods implemented in this work. It should be mentioned that,
for the steady and uniform flow considered in this test, the contribution of the advection step to the
error is negligible; therefore, the error E is only due to reconstruction. On the other hand, as in a
similar test carried out by Harvie and Fletcher [23] and López et al. [9] for 2D, the reconstruction
error tends to reach a minimum value as the Courant number approaches unity and tends to reach a
bounded value as the Courant number approaches zero. As discussed by Harvie and Fletcher [23],
this asymptotic behavior is important for the viability of the method when small time steps are
required. Note that Youngs’ method is more accurate for coarser grids, although its convergence
order is considerably lower (O=0.75 for the finest grid and the lowest Courant–Friedrichs–Lewy
(CFL) number considered in this test) than that obtained with the reconstruction method proposed
in this work (O=1.91 and 1.82 with and without the CBIR step, respectively). Also note that for
this test, in which the interface should keep its spherical shape, the additional CBIR step does not
improve the accuracy of the proposed reconstruction method.
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Figure 8. L1 error norm obtained in the translation test using three different
grid sizes, as a function of the CFL number.

3.3. Rotation test

The second test involves the rotation of a sphere of fluid of radius 0.15, initially centered at
(0.5,0.75,0.5), around an axis parallel to the z-axis and centered in a domain of size 1×1×1,
in a uniform vorticity field. A CFL number based on the maximum velocity component in the
domain approximately equal to 0.5 was used.

Table IV shows the error E and the order of convergence after the sphere of fluid undergoes
one complete revolution. The results are obtained with the FMFPA-3D advection method [20]
and several reconstruction methods. Note that the shape of the sphere hardly changes during the
computation; hence, as in the test in the previous section, the use of an additional CBIR step does
not improve the accuracy of the results. It can be observed that the accuracy of the reconstruction
method of Youngs for coarser grids is similar to that of the proposed reconstruction method,
although the higher convergence order of the latter substantially improves its accuracy for fine
grids. Also note that the improved ELVIRA-3D method also reaches nearly second-order accuracy,
although at the cost of a considerable increment in CPU time.

3.4. Deformation test

In this test, proposed by LeVeque [24], a sphere of fluid of radius 0.15, initially centered at
(0.35,0.35,0.35) within a unit computational domain, is deformed in a solenoidal velocity field
given by

u(x, y, z) = 2sin2(�x)sin(2�y)sin(2�z)

v(x, y, z) = −sin(2�x)sin2(�y)sin(2�z)

w(x, y, z) = −sin(2�x)sin(2�y)sin2(�z)

(10)

which was modulated in time by multiplying by the factor cos(�t/T ), using a period T =3.
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Table IV. L1 error norm, E , and order of convergence, O, obtained in the rotation of a spherical fluid
body test, using different reconstruction methods and four grid sizes.

Reconstruction algorithm Grid size E O

Youngs 323 4.32×10−4

1.54
643 1.49×10−4

1.23
1283 6.36×10−5

1.13
2563 2.91×10−5

Improved ELVIRA-3D 323 4.92×10−4

1.82
643 1.39×10−4

1.91
1283 3.70×10−5

—
2563 —

CLCIR 323 4.35×10−4

1.87
643 1.19×10−4

1.88
1283 3.24×10−5

1.74
2563 9.67×10−6

CLC-CBIR 323 4.96×10−4

1.94
643 1.29×10−4

1.93
1283 3.38×10−5

1.73
2563 1.02×10−5

Table V shows the error E and order of convergence at t=T obtained using the different
reconstruction methods implemented in this work and the FMFPA-3D advection method [20].
A CFL number (based on the maximum velocity component in the domain) equal to 1.0 was
used. Note that, in this case, the additional CBIR step used in the proposed reconstruction
method considerably increases the accuracy of the results. As regards the comparison with the
improved ELVIRA-3D method, conclusions similar to those deduced from Tables III and IV can be
drawn.

The results of the proposed method are also compared with those obtained with the hybrid particle
level set method of Enright et al. [25]. For this purpose, the results obtained with the FMFPA-3D
and CLC-CBIRmethods, with a CFL number equal to 1.0 and the same grid size (1003) used in [25],
are presented in Figure 9(a) for different instants (t=nT/15, with n=0,1,2, . . . ,7,9,11,13,15).
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Table V. L1 error norm, E , and order of convergence, O, obtained in the deformation test of LeVeque
[24] with CFL=1.0, using different reconstruction methods and four grid sizes.

Reconstruction algorithm Grid size E O

Youngs 323 7.22×10−3

1.46
643 2.62×10−3

1.93
1283 6.86×10−4

1.71
2563 2.09×10−4

Improved ELVIRA-3D 323 7.35×10−3

1.45
643 2.69×10−3

2.05
1283 6.51×10−4

—
2563 —

CLCIR 323 6.85×10−3

1.53
643 2.38×10−3

2.47
1283 4.31×10−4

2.47
2563 7.78×10−5

CLC-CBIR 323 6.64×10−3

1.67
643 2.09×10−3

2.57
1283 3.52×10−4

2.59
2563 5.86×10−5

A comparison by visual inspection with the corresponding results obtained by Enright et al. [25]
shows that the results obtained with our method compare relatively well with their hybrid particle
level set solution and favorably with their standard level set results. It is worth noting that the
net change in total volume at the end of the test (t=T ) predicted by the method proposed here
is about 10−6%, whereas with the standard level set method about 80% of the initial volume is
lost and about 2.6% with the particle level set method. The corresponding results obtained with
a finer grid of size 2003 are presented in Figure 9(b). Note that, in this case, the grid resolution
is sufficiently high to appropriately resolve the thin structures that appear when the body of fluid
undergoes the maximum deformation. The values of the error E obtained for the grid sizes of 1003

and 2003 cells are 6.60×10−4 and 9.94×10−5, respectively, representing a convergence order of
2.73.
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Figure 9. Results for the F=0.5 iso-surfaces of the deformation test of LeVeque [24] at instants t=nT/15,
with n=0,1,2, . . . ,7,9,11,13,15, for grid sizes of (a) 1003 and (b) 2003.

3.5. 3D shearing flow test

In this test, a sphere of fluid of radius 0.15, initially centered at (0.5,0.75,0.25) in a domain of
size 1×1×2, is deformed in the velocity field defined as

u(x, y, z) = sin2(�x)sin(2�y)cos(�t/T )

v(x, y, z) = −sin2(�y)sin(2�x)cos(�t/T )

w(x, y, z) = {1−2[(x−0.5)2+(y−0.5)2]1/2}2 cos(�t/T )

(11)

which is a combination of the classical vortex-in-a-box test of Rider and Kothe [2] with a laminar
pipe flow in the z-direction, as in the work of Liovic et al. [14]. Table VI shows, for different grid
sizes, the error E and order of convergence at t=T obtained for values of T =3,6 and 9, using
the reconstruction methods implemented in this work and the FMFPA-3D advection method [20],
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940 J. LÓPEZ ET AL.

Table VI. L1 error norm, E , and order of convergence, O, obtained for three values of T and different grid
sizes in the time-reversed single vortex test with a shear flow velocity along the z-axis and CFL=1.0,

using different reconstruction methods.

T =3.0 T =6.0 T =9.0Reconstruction Grid
algorithm size E O E O E O

Youngs 32×32×64 3.74×10−3 1.21×10−2 1.60×10−2

1.74 1.47 0.79
64×64×128 1.12×10−3 4.38×10−3 9.27×10−3

1.75 1.61 1.58
128×128×256 3.34×10−4 1.43×10−3 3.09×10−3

CLCIR 32×32×64 3.45×10−3 1.15×10−2 1.61×10−2

1.85 1.55 0.98
64×64×128 9.58×10−4 3.92×10−3 8.14×10−3

2.00 1.72 1.61
128×128×256 2.40×10−4 1.19×10−3 2.67×10−3

CLC-CBIR 32×32×64 3.03×10−3 9.95×10−3 1.47×10−2

1.99 1.61 1.06
64×64×128 7.64×10−4 3.27×10−3 7.03×10−3

2.09 1.82 1.70
128×128×256 1.80×10−4 9.27×10−4 2.17×10−3

CVTNA PCFSC, Liovic et al. [14]
64×64×128 6.20×10−4 3.64×10−3 8.01×10−3

Front tracking LGB, Du et al. [26]
64×64×128 6.28×10−4 9.07×10−4 1.19×10−3

The results of the last two rows, for the intermediate grid size, are taken from Table 5 in [26].

with a CFL number equal to 1.0. As in the previous tests, the proposed reconstruction method
obviously provides, in all cases, an accuracy and convergence order higher than those of Youngs’
method. This improvement can be visually observed from Figure 10, where a comparison between
the results obtained with Youngs’ (Figure 10(a)) and the CLC-CBIR (Figure 10(b)) methods for the
intermediate grid size and T =9 is presented. Note the significant reduction in the fragmentation
of the fluid achieved when the proposed reconstruction method is used.

The results shown in the last two rows of Table VI correspond to those obtained by Liovic
et al. [14] using their unsplit advection (PCFSC) and reconstruction (CVTNA) methods and by Du
et al. [26] using their front tracking method (LGB), for the intermediate grid of 64×64×128. Note
that, except when T =3, the FMFPA-3D method coupled with the CLC-CBIR method showed
a slightly higher accuracy than that obtained by Liovic et al. [14] using their more expensive
iterative second-order reconstruction method, especially in cases with large deformation. Also,
note that the front tracking method again provides a higher accuracy than that obtained with any of
the PLIC-VOF methods presented in the table, especially for the cases with greater deformations.
However, the relative merits of the different methods should also be assessed taking into account
the required computational effort, and, from this point of view, the PLIC-VOF methods have
several advantages.
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Figure 10. Results for the F=0.5 iso-surfaces of the vortex-in-a-box test with a non-zero velocity
component along the z-axis and T =9, obtained using (a) Youngs’ method and (b) the proposed CLC-CBIR

method, for the intermediate grid size of 64×64×128.

4. CONCLUSIONS

A new non-iterative PLIC reconstruction method has been developed for tracking interfaces in 3D.
The new reconstruction method uses a conservative level-contour interface reconstruction coupled
with a cubic-Bézier interpolation and achieves second-order accuracy even for high grid resolutions.
The proposed reconstruction method has been assessed using different tests. The overall accuracy
of the results is found to be slightly higher than that obtained with other schemes of similar degree
of complexity, especially in flows involving large deformation, and, at the same time, a substantial
reduction in the CPU time required by the reconstruction algorithm is achieved.

APPENDIX A: IMPLEMENTATION DETAILS OF THE RECONSTRUCTION METHODS
USED FOR COMPARISON

A.1. Youngs’ method

In the PLIC reconstruction method of Youngs [4] (see also [27, 28]), the interface is reconstructed
in each cell as a plane n·x+C=0, in which the vector normal to the interface is obtained from
the gradient of the volume fraction function, ∇F . A finite-difference formula is used to obtain
the gradient of F at each corner of the cell. For example, the x component of the gradient at the
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corner (i+ 1
2 , j+ 1

2 ,k+ 1
2 ) can be expressed as

(∇F)x = 1

4�x

1∑
r=0

1∑
s=0

(Fi+1, j+r,k+s−Fi, j+r,k+s) (A1)

The gradient of F at the center of the cell (i, j,k) is obtained from the average of the gradients
at the eight corners, and the normal to the interface at the corresponding cell is determined as
n=∇F/|∇F |. Gueyffier et al. [27] demonstrated that this method is only first-order accurate,
although for relatively coarse grids the accuracy is comparable to that of a second-order least-
squares algorithm.

Finally, the constant C of the interface plane is obtained from the value of F in the cell and
enforcement of local volume conservation.

A.2. Extension of the ELVIRA method [11, 12] to 3D

Two different versions of the ELVIRA method in 3D were implemented in this work. The first
version, which we refer to as the original ELVIRA-3D method, was implemented following a
procedure similar to that described by Miller and Colella [13]. For each cell interface (i, j,k) to
be reconstructed, a list of 24 or 48 candidate orientations, depending on the location of the center
of mass of the VOF distribution around the considered cell, is obtained per coordinate direction
following the indications given in [13]. This provides a total of 72,96,120 or 144 candidate
orientations. For each candidate orientation, a planar interface is reconstructed by enforcing local
volume conservation in the considered cell. Then, the reconstructed interface is extended beyond
the considered cell, and an associated error function is calculated as

Ei, j,k =
p∑

r=−p

p∑
s=−p

p∑
t=−p

(Fi+r, j+s,k+t −F∗
i+r, j+s,k+t )

2 (A2)

where p=2 (value that corresponds to a stencil of 5×5×5 cells) and F∗
i+r, j+s,k+t is the

volume fraction calculated by truncating the boundaries of the cell (i+r, j+s,k+ t) with the
extended planar interface. The candidate orientation that minimizes the error function defined in
Equation (A2) is selected as the final interface orientation in the cell (i, j,k), and the position of
the planar interface is finally obtained from volume enforcement.

In order to validate our implementation of the method, the same rotation test involving a notched
block as resolved by Miller and Colella [13] was carried out, and a high degree of agreement was
found.

In the second version of the ELVIRA method, which will be referred to as the improved
ELVIRA-3D method, we have implemented in 3D, the stencil used in Equation (A2) is reduced
to 3×3×3 cells (p=1). An additional candidate is obtained from the average value of every 24
candidates per coordinate direction obtained as indicated in [13]. Therefore, this approach provides
a total of 75,100,125 or 150 candidate orientations. Despite the slight increase in the number of
candidate orientations, note that the volume fraction error of Equation (A2) needs to be evaluated
in only 27 cells per each candidate versus the 125 cells used in the first version of the method,
which makes the CPU time consumed substantially lower.
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